
 1/1

ACN Protocol Implementation
DMP layer
Draft 080628

Kurt Sterckx

June 28, 2008

Abstract

This document gives information about the implementation of the DMP layer of
the ACN protocol. This is NOT a official document.

1 Reference

You can’t read this document without having access to the following
documents.

[ACN] Entertainment Service and Technology Association

[http://www.esta.org/tsp/]. ANSI E1.17-2006, Entertainment
Technology – Architecture for Control Networks. 2006-10-19

[Arch] Entertainment Service and Technology Association

[http://www.esta.org/tsp/]. ESTA TSP CP/2003-1007R4.
Entertainment Technology – Architecture for Control Networks.
“ACN” Architecture. 2006-10-19

[DMP] Entertainment Service and Technology Association

[http://www.esta.org/tsp/]. ESTA TSP CP/2003-1010R3.
Entertainment Technology – Architecture for Control Networks.
Device Management Protocol. 2006-10-19

[DDL] Entertainment Service and Technology Association

[http://www.esta.org/tsp/]. ESTA TSP CP/2003-1011R4.
Entertainment Technology – Architecture for Control Networks.
Device Description Language. 2006-10-19

.

 2/2

2 Introduction

This document gives suggestions and remarks about implementing
the DMP layer of the ACN protocol. The reader must be familiar with
[ACN], [Arch] and [DMP]. When there is a conflict between this document
and the reference documents, the information in the reference documents
must be used.

I have personal no connection with the ESTA nor the ACN

commission, so all the information in this document is based on reading the
[ACN] documentation. It took me a lot of reading to understand the
documentation and I hope that this document shortens that process for a
reader.

I write this document while I try to implement C++ classes that can

be used to create/parse ACN packets. This software will be available as
open source (http://ksacn.sourceforge.net/).

3 DMP

DMP is used in the ACN protocol suite to exchange property values.
In the ACN world each “device” has a map with properties. Each property
has a address in this map.

 3/3

A property represent a certain value. That value can be as short as one
byte and as large as a bitmap. It is very important to known that DMP
doesn’t carry any information about the value type. This information is in
the DDL file. This means that a controller can only know the value type (the
number of bytes and the format) of a property by reading the DDL file of
the device. A device know the value type because it is the owner of the
property, it knows the properties it uses.

The address is a four octet(32-bit) number. Each property has a

unique address. In DMP you can set a property by supplying its address and
a value.

4 Fixed sized and variable sized values

The value of a property can have a type with a fixed number of bytes.
Think of the 8-bit intensity value used for a dimmer. It will be specified as a
one octet value in the DDL file(varsize=”false”; size=”1”). In this case the
value can be placed in the DMP data without any extra information. When
the DMP packet is parsed by the device it will find that the property at the
dimmer address is accessed and it knows that the value is one octet. So it
can read one byte from the data. In this case the value length is NOT
present in the DMP packet.

The value of a property can also have a variable number of bytes. A

example of this is a string that can have a variable number of characters. In
this case the DDL file will specify that the property is a variable type. The
DDL will also specify the maximum length(varsize=”true”; size=maximum
size). When the controller wants to set the value of a variable sized property
it will first store the real size of the value in the DMP data in two octets,
followed by the value octets(see 3.1 Property types in [DMP]). A device that
parses the DMP packet will known that the property has a variable sized
value. So it will first read the size and then value bytes.

In either case the controller must known the type of a property. It can

known this by reading the DDL. The device must also known the type of a
property. It is the owner of the properties, so it knows there sizes.

It is VERY IMPORTANT to understand that the type/size of the

properties is NOT present in the DMP packet. This means that a monitor
devices that reads ACN packets, can’t parse the DMP data, without reading
the DDL file. A example is Wireshark, a Ethernet monitor, it can’t parse
DMP data. It can however skip the data, so it can parse the other PDU’s.

 4/4

I think that the type information is left out of DMP packet to make
them smaller. Because the controller must always have a way to known the
types of the properties before it can manipulate them, it also known there
size. The device already known the sizes of his properties. So it would only
mean more data to transfer and more error checking to perform when the
size of the properties would also be present in the DMP data.

5 Example device

For the rest of the text it is better to have a example device, so we can
reference to its property map. The device is controlling a very simple
moving head. The next pictures shows his property map.

I think the properties are very well known in the lighting world. Only

the Nick name is something new. This is a name that can be given to the
head by a user. This can be useful to identify the moving head. The model
name is the name given by the manufacture to this moving head. It is a read
only property. All the other properties can be read and written.

6 DMP messages

A DMP packet contains messages. Each message is place in a PDU.
The vector of the PDU contains the message type. This vector is always one

 5/5

octet long. The header of the PDU contains the Address and Data type.
This octet represents the format of the addresses(and NOT the values) used
in the DMP data. The DMP data is placed in the PDU data. The format of
the data depends on the message type.

DMP has in total 16 messages. The messages are place in two

categories: Primary messages and Response message. Each category has 8
messages. The primary message are send by a controller. The response
messages are the response on a primary message, and are send by the device.

7 Address and Data type

I find the name of this octet a bit confusing. In most cases the octet
doesn’t define the data type. So the name should better have been Address
type. The octet gives information about the addresses used in the DMP
data.

The octet has five fields (see 5.1.5 Address and Data types in [DMP]),

but only four of them are defined.

7.1 Virtual/actual field

A address can be actual or virtual. The actual address is the address

like specified in the DDL file. A controller can however create a virtual
address map in the device. This virtual address map is like a patching
system. In stead of using DMX address 1, you patch it to channel 5 of your
desk, from that moment you can use channel 5 to access DMX address 1.
The same thing can be done with the virtual address map. The controller
supplies a virtual address that is connected to a actual address. Whenever the

 6/6

device must handle a virtual address, it uses the virtual map to lookup the
actual address. This allows a controller to create a more efficient map,
allowing to access the properties with shorter DMP messages. It allows also
the linking of multiple properties to the same virtual address. This can be
used to change multiple properties with just a write to one virtual address
(for example when a dimmer has a fade time for each of it channels, the
fade properties can be connected to one virtual address. Setting the property
by using the virtual address, will change all the fade properties, they will all
get the same value).

The next pictures shows a example of a virtual address map for our

example device.

The controller must known the actual addresses that are connected to

the virtual address. This is needed so it knows the value type of the
property.

The device has a virtual map for each controller. The virtual map is

never shared amongst controllers. A controller may only have one virtual
map. The device can however decide how many maps may be created,
meaning how many controllers may create a map. It can take a lot of
resources(memory) to implement a virtual map. A device must not support
the virtual mapping.

For implementing a virtual map it is very important to known that

there can’t be more virtual addresses then there are actual addresses. The
DDL must also specify which actual addresses can be connected to a virtual

 7/7

address. This can be used to limit the number the resources needed by the
device to create a virtual map. A controller may only map a single actual
address(single property) to ONE virtual address. When the controller
allocates a virtual map, the device will allocate memory for a table that can
hold the maximum number of virtual addresses(the same, or less, than the
number of actual addresses).

Example implementation:

When the controller allocates a virtual map, the device will create a

array. Each item of the array has three items: in use flag, virtual address,
actual address. The in use flag indicates of the item is empty or in use.

When the controller uses the Map Property message to map a virtual

address to a actual address, the device will perform the following steps:

1. Look up the actual address in the array. When it is already
present, [DMP] specified that the actual address must be
remapped to the new virtual address.

2. When the actual address is not found, a empty item must be
found. This item must be filled with the virtual address and the
actual address. The in use flag is also set.

3. I think it is also best to check of the virtual address is
connected to actual addresses with the same value type. When
this is not the case, it is best to refuse the mapping. There is
however no reason code for this. The reason for this, is the fact
that one virtual address can be mapped to multiple actual
address. When now the virtual address is used to set the value,
the value is given to each actual address. This means that the
value expected by each actual address must be of the same
type. When this is not the case, it is impossible to handle the
value. I think it is better to check that the value can be handled,
during the mapping, and refuse the mapping when this is not
the case. The [DMP] document has no information about this
situation.

When the controller send a message with a virtual address, the device

will use the array to lookup the virtual address. When the virtual address is
found, the actual address is also known and from that the property(and is
value type). The virtual address can be present more than once in the array.
This means that each actual address connected with the virtual address must
be set to the given property value.

 8/8

The array can be implemented in a more efficient (trees, maps, …), so
that the time it takes to lookup a virtual address can be short. It will depend
on the number of virtual addresses that are allowed and the resources
available to the device, what is the best implementation.

The virtual address map is a complete map that in theory holds all the

possible virtual addresses, meaning a 4Giga byte space. However certain
virtual address can be unconnected. In that case the virtual address is just
ignored.

7.2 Relative/Absolute field

A address can be relative or absolute. In case of absolute address the

given address value is the real virtual/actual address value. The value can
immediate be used to find the property.

In case of a relative address, the given value must be added to a

address stored in the device. This address is called the last address in THIS
document.

The last address will be set to the last absolute address that is accessed

in the same DMP SDT Client block. When a absolute address is used to
access a property, the last address will be set to the absolute address. When a
relative address is used to access a property, the absolute address is
calculated by adding the relative address to the last address, the result is
store in the last address and used to access the property. The addition is
done with role over, for example adding 0x00000003 to 0xFFFFFFFF gives
0x00000002.

It is not obvious from [DMP] what must be done when virtual and

actual addresses are intermixed in the same DMP SDT Client block and
both use relative addressing. It think it is best to have a last virtual address
and a last actual address. They are two separated address spaces.

A DMP SDT Client block must always start with a absolute address.

This means that the last address is set to the value UNKNOWN when the
parser starts reading the DMP SDT Client block. Any relative address that is
given when the last address is set to unknown, is a error. Any actual address
given will be stored in the last address and remove the UNKNOWN value.

The use of relative addresses allows for very compact DMP packets.

 9/9

7.3 Non-range/Range

To reduce the size of a DMP packet even further the ACN protocol

allows the controller to access a range of addresses. There are four different
formats:

7.3.1 Non-Range, single data item

In this case there is only one address given and that address is used to

access a data item. It depends on the message type if virtual and/or relative
addresses can be used (there is a nice table at the end of the [DMP] that
shows the different addressing methods for each message type. This
document also has a table but in a little bit different format, see 7.5 Address
and Data type naming).

The size of the data item is NOT given in the DMP packet. You only

know there is only one item. The size of the data depends on the DMP
message, and in case it is a property value, the value type of the property.

The given address can be 1, 2 or 4 octets long (see 7.4 Size of

address).

7.3.2 Range, single data item

In this case there is start address, a increment and a count given. The

range contains the given count of addresses. This is the number of addresses
that must be accessed. The range starts at the given start address(that can be
virtual and/or relative). To get the next address, the address must be
incremented with the given increment.

Each property in the range will be set to given data. This means that

all data items must be of the same type(or at least size) !!

The size of the data item is NOT given in the DMP packet. You only

know there is only one item. The size of the data depends on the DMP
message, and in case it a property value, the value type of the property.

Example:

Start address Actual/Absolute 0x00000001
Increment 1
Count 2

 10/10

Data 0x0123

When this is used as data for the Set Property message type and
send to the example device, the pan and tilt will both be set to
0x0123.

The given start address/increment/count can be 1, 2 or 4 octets long

(see 7.4 Size of address).

It may not be obvious when reading the standard document, but the

start address may be virtual/actual and relative/absolute. It depends
however on the message type what address types are supported. In case of
virtual addresses the address calculation(increment) is performed on the
virtual addresses. When there is a non existing virtual address in the range, it
is ignored, it is not a error.

7.3.3 Range, array of equal size data items

This uses the same principles as Range, Single Data item.

In this case however there are multiple data items. Each data item

must be of the same size. There must be the same number of data items as
addresses present in the range. This means that there must be count data
items.

The first data item will be given to the start address. The next data

item to the start address + increment, and so.

The size of the data item is NOT given in the DMP packet. You only

know there are multiple items of the same size. The size of the data depends
on the DMP message, and in case it a property value, the value type of the
property.

Example:

Start address Actual/Absolute 0x00000001
Increment 1
Count 2
Data 0x0123
Data 0x5678

When this is used as data for the Set Property message type and
send to the example device, the pan will be set to 0x0123 and the
tilt to 0x5678

 11/11

The given start address/increment/count can be 1, 2 or 4 octets long

(see 7.4 Size of address).

In case of virtual addresses, the size of the data items can be

calculated based on the DMP packet. This is done by dividing the size of the
data array by count. There may also be only one address, data pair(see later)
in the DMP PDU. This is needed to known the size of the data array.

Size of data array = PDU Length –2/3(Length) -1(Vector) –1(Header) –address length

The address length depends on the number of octets used to

represent the start address, increment and count, resulting in a address
length of 3, 6 or 12.

When this range type is used to transfer variable sized properties

using virtual addresses, all values must have the same size, so the two octets
that indicate the length, must be the same (for example when strings are
transferred).

7.3.4 Range, array of mixed size data items

This uses the same principles as Range, Single Data item.

In this case however there are multiple data items. Each data item

can be of a different size. There must be the same number of data items as
addresses present in the range. This means that there must be count data
items.

This range can’t be used with virtual addresses.

The first data item will be given to the start address. The next data

item to the start address + increment, and so.

The size of the data item is NOT given in the DMP packet. You only

know there are multiple items of the same size. The size of the data depends
on the DMP message, and in case it a property value, the value type of the
property.

Example:

Start address Actual/Absolute 0x00000000
Increment 1

 12/12

Count 3
Data 0x81
Data 0x0123
Data 0x5678

When this is used as data for the Set Property message type and
send to the example device, the intensity will be set to 0x81, the pan
will be set to 0x0123 and the tilt to 0x5678

The given start address/increment/count can be 1, 2 or 4 octets long

(see 7.4 Size of address).

7.4 Size of address

The size of the address/increment/count can be 1, 2 or 4 octets. The

size of the fields is however the same. So there are only three combinations
possible in case of a range.

 Start address

Total for non
range

Increment Count Total length in case
of range

1 octet 1 octet 1 octet 1 octet 3 octets
2 octets 2 octets 2 octets 2 octets 6 octets
4 octets 4 octets 4 octets 4 octets 12 octets

7.5 Address and Data type naming

I have named each possibility so I can use the same name in the

software. The name has three parts separated by a underscore.

The first part indicates the Virtual/Actual and Absolute/Relative

fields:

VA Virtual + Absolute
VR Virtual + Relative
AA Actual + Absolute
AR Actual + Relative

The second part indicates the range type:

NR Non range, single data item
RS Range, single data item
RAeS Range, multiple data items, equal size (don’t ask where

the A comes from)

 13/13

the A comes from)
RSmS Range, multiple data items, mixed size

The third part indicates the number of octets used by the address,

increment and count fields:

ONE One octet
TWO Two octets
FOUR Four octets

The next table gives all the possible names and the address type

Name Virtual Relative Address size Address type
VA_NR_ONE X 1 Non Range, single data item
VR_NR_ONE X X 1
AA_NR_ONE 1
AR_NR_ONE X 1

VA_NR_TWO X 2 Non Range, single data item
VR_NR_TWO X X 2
AA_NR_TWO 2
AR_NR_TWO X 2

VA_NR_FOUR X 4 Non Range, single data item
VR_NR_FOUR X X 4
AA_NR_FOUR 4
AR_NR_FOUR X 4

VA_RS_ONE X 1 Range, single data item
VR_RS_ONE X X 1
AA_RS_ONE 1
AR_RS_ONE X 1

VA_RS_TWO X 2 Range, single data item
VR_RS_TWO X X 2
AA_RS_TWO 2
AR_RS_TWO X 2

VA_RS_FOUR X 4 Range, single data item
VR_RS_FOUR X X 4
AA_RS_FOUR 4
AR_RS_FOUR X 4

VA_RAeS_ONE X 1 Range, multiple data item, same size
VR_RAeS_ONE X X 1
AA_RAeS_ONE 1
AR_RAeS_ONE X 1

VA_RAeS_TWO X 2 Range, multiple data item, same size
VR_RAeS_TWO X X 2
AA_RAeS_TWO 2
AR_RAeS_TWO X 2

VA_RAeS_FOUR X 4 Range, multiple data item, same size
VR_RAeS_FOUR X X 4

 14/14

AA_RAeS_FOUR 4
AR_RAeS_FOUR X 4

AA_RSmS_ONE 1 Range, multiple data item, mixed size
AR_RSmS_ONE X 1

AA_RSmS_TWO 2 Range, multiple data item, mixed size
AR_RSmS_TWO X 2

AA_RSmS_FOUR 4 Range, multiple data item, mixed size
AR_RSmS_FOUR X 4

The next table shows the different DMP messages with the possible

address types. I use the names defined in previous table. The size is however
omitted (_xxx can be _ONE, _TWO, _FOUR).

Message type Data item Address type
Set property Property Address-Data pairs VA_NR_xxx (only one pair)
 VR_NR_xxx (only one pair)
 AA_NR_xxx
 AR_NR_xxx
 VA_RS_xxx (only one pair)
 VR_RS_xxx (only one pair)
 AA_RS_xxx
 AR_RS_xxx
 VA_RAeS_xxx (only one pair)
 VR_RAeS_xxx (only one pair)
 AA_RAeS_xxx
 AR_RAeS_xxx
 AA_RSmS_xxx
 AR_RSmS_xxx

Set property fail Address-Reason code pairs AA_NR_xxx
 AR_NR_xxx
 AA_RS_xxx
 AR_RS_xxx
 AA_RAeS_xxx
 AR_RAeS_xxx
 AA_RSmS_xxx
 AR_RSmS_xxx

Get property Property addresses VA_NR_xxx

 VR_NR_xxx
 AA_NR_xxx
 AR_NR_xxx
 VA_RS_xxx
 VR_RS_xxx
 AA_RS_xxx
 AR_RS_xxx

Get property reply Property Address-Data pairs AA_NR_xxx
 AR_NR_xxx
 AA_RS_xxx
 AR_RS_xxx
 AA_RAeS_xxx
 AR_RAeS_xxx

 15/15

 AA_RSmS_xxx
 AR_RSmS_xxx

Get property fail Address-Reason code pairs AA_NR_xxx
 AR_NR_xxx
 AA_RS_xxx
 AR_RS_xxx
 AA_RAeS_xxx
 AR_RAeS_xxx
 AA_RSmS_xxx
 AR_RSmS_xxx

Event Property Address-Data pairs AA_NR_xxx
 AR_NR_xxx
 AA_RS_xxx
 AR_RS_xxx
 AA_RAeS_xxx
 AR_RAeS_xxx
 AA_RSmS_xxx
 AR_RSmS_xxx

Map property Virtual address type + Actual-Virtual

address pairs
AA_NR_xxx

 AR_NR_xxx
 AA_RS_xxx
 AR_RS_xxx
 AA_RAeS_xxx
 AR_RAeS_xxx

Unmap property Actual property addresses AA_NR_xxx
 AR_NR_xxx

 AA_RS_xxx
 AR_RS_xxx

Map property fail Address-Reason code pairs AA_NR_xxx
 AR_NR_xxx
 AA_RS_xxx
 AR_RS_xxx
 AA_RAeS_xxx
 AR_RAeS_xxx
 AA_RSmS_xxx
 AR_RSmS_xxx

Subscribe Actual property addresses AA_NR_xxx
 AR_NR_xxx

 AA_RS_xxx
 AR_RS_xxx

Unsubscribe Actual property addresses AA_NR_xxx
 AR_NR_xxx

 AA_RS_xxx
 AR_RS_xxx

Subscribe Accept Property addreses AA_NR_xxx
 AR_NR_xxx

 AA_RS_xxx
 AR_RS_xxx

 16/16

Subscribe Reject Address-Reason code pairs AA_NR_xxx
 AR_NR_xxx

 AA_RS_xxx
 AR_RS_xxx

 AA_RAeS_xxx
 AR_RAeS_xxx
 AA_RSmS_xxx
 AR_RSmS_xxx

Allocate Map No data

Deallocate Map No data

Allocate Map Reply One reason code

The next figure shows the Property address – Data pairs layout for

each name. The property value can be removed in case there is no value, or
changed to a reason code or virtual address when that is used in the
message.

 17/17

 18/18

7.6 Property Address-Data Pair

In the Set Property, Get Property Reply and Event messages the

PDU data can contain multiple address/data pairs. Each pair has the format
given by the Address and Data type in the header of the PDU. This means
that we can set multiple properties on total different addresses and with
total different sizes using only one PDU. We can also set multiple ranges
using one PDU. This features is very useful to create small DMP packets.

Example:

The following DMP PDU shows how one PDU can be used to set

both the dimmer, pan and tilt property of the example moving head (the
Address and data type is AA_NR_ONE=0x00).

It is important to notice that all addresses have the same size, but the

values have different sizes. There is however NO information in the PDU
about the value sizes. This means the PDU can only be parsed by software
that knows the value sizes (I known, I keep repeating this).

This PDU can’t be used to change the other properties by adding a

extra address-data pair. The other properties have a address that is bigger
then 255. The used address type is actual, absolute, one octet,
(AA_NR_ONE) so only addresses from 0 to 255 can be given.

 19/19

The software that must parse this PDU must use the Length of the
PDU to known of there are extra pairs in the data. Each time a pair is
found, the remaining length is decrement with the length of the pair. The
parsing continues until the remaining length is 0.

7.7 Other data formats

The PDU Data format depends on the DMP message type. There are

six different formats possible. The next figure shows the different formats.

 20/20

7.7.1 Actual – Virtual Address pairs

The data used in a Map property message is rather difficult to

understand. The first octet contains a Virtual Address type. This is of the
same format as Address and Data type. There are however two things that
MUST be the case:

• V bit must be 1, meaning a virtual address

• D1 bit must 0

This means that only the following formats are accepted (with xxx =

ONE, TWO or FOUR):

• VA_NR_xxx

• VR_NR_xxx

• VA_RS_xxx

• VR_RS_xxx

The other data in the Map property message contains Actual

Address/Virtual Address pairs. The format of these pairs depend on the
Actual Address Type placed in the DMP PDU header and the Virtual
address type, place in the first octet. The following combinations are
possible

Actual Address Type Virtual Address type

Ax_NR_xxx Vx_NR_xxx
 Vx_RS_xxx

Ax_RS_xxx Vx_NR_xxx
 Vx_RS_xxx

Ax_RAeS_xxx Vx_NR_xxx
 Vx_RS_xxx

All other combinations are NOT allowed.

This document discusses each combination to see how it must be

handled.

7.7.1.1 Ax_NR_xxx + Vx_NR_xxx

This is the simplest combination. There is ONE actual address and

ONE virtual address in each pair. The actual address must be connected to
the virtual address. There can be multiple pairs.

 21/21

Example

The virtual map will be:

Actual Address Virtual Address

0x01 0x10
0x02 0x20
0x03 0x30

7.7.1.2 Ax_NR_xxx + Vx_RS_xxx

In this case there is ONE actual address and a RANGE of virtual

addresses. So there can be more virtual addresses then there are actual
addresses. A actual address may however be connected to only one virtual
address.

I think this combination is not allowed but it is not obvious from the

standard.

I have implemented it so that the code gives back each virtual address

in the range with the same actual address. The virtual mapping code will just
remap the actual address to the new virtual address. So the actual address
will be mapped to the last virtual address in the range.

There can be multiple pairs with each pair containing ONE actual

address and a RANGE of virtual addresses.

Example

 22/22

The virtual map will be:

Actual Address Virtual Address Remark

0x01 0x10 Overwritten by next combination
0x01 0x11 Overwritten by next combination
0x01 0x12 Overwritten by next combination
0x01 0x13 This will be used
0x02 0x20 Overwritten by next combination
0x02 0x22 Overwritten by next combination
0x02 0x24 This will be used

7.7.1.3 Ax_RS_xxx + Vx_NR_xxx

In this case there is RANGE actual address and ONE virtual

addresses. In this case all the actual addresses in the range are connected to
the same virtual address.

There can be multiple pairs with each pair containing a RANGE of

actual addresses and ONE virtual address.

Example

 23/23

The virtual map will be:

Actual Address Virtual Address

0x01 0x10
0x02 0x10
0x03 0x10
0x04 0x10
0x08 0x20
0x0A 0x20
0x0C 0x20

7.7.1.4 Ax_RS_xxx + Vx_RS_xxx

In this case there is RANGE actual address and RANGE virtual

addresses. In this case all the actual addresses in the range are connected to
corresponding virtual addresses in the range. Both ranges must have the
same amount of items (counts must be equal).

So the code must step over both ranges at the same moment and

connect the corresponding addresses.

There can be multiple pairs with each pair containing a RANGE of

actual addresses and RANGE of virtual address.

Example

 24/24

The virtual map will be:

Actual Address Virtual Address

0x01 0x10
0x02 0x11
0x03 0x12
0x04 0x13
0x08 0x20
0x0A 0x24
0x0C 0x28

7.7.1.5 Ax_RAeS_xxx + Vx_NR_xxx

In this case there is RANGE actual address and multiple virtual

address in the same pair. The number of virtual address is equal to the
number of addresses in the actual address range(the count). Each actual
address in the range is connected to one virtual address.

There can be multiple pairs.

Example

 25/25

The virtual map will be:

Actual Address Virtual Address

0x01 0x10
0x02 0x20
0x03 0x30
0x04 0x40
0x08 0x80
0x0A 0x82
0x0C 0x85

7.7.1.6 Ax_RAeS_xxx + Vx_RS_xxx

In this case there is RANGE actual address and multiple RANGES of

virtual address in the same pair. The total number of virtual address must be
equal to the number of addresses in the actual address range(the count).

The code must step over both ranges at the same moment and

connected the corresponding addresses. When all addresses in a virtual
address range are handled, the next range must be used.

There can be multiple pairs.

Example

 26/26

The virtual map will be:

Actual Address Virtual Address

0x01 0x10
0x02 0x11
0x03 0x12
0x04 0x13
0x05 0x20
0x06 0x22
0x08 0x80
0x0A 0x82
0x0C 0x84
0x0E 0x86
0x10 0x90
0x12 0xA0
0x14 0xA4
0x16 0xA8

7.7.2 Address – Reason Code pairs

 27/27

The data used in a Get property fail, Set Proper fail, Map property fail
and Subscribe reject messages uses Address-Reason Code pairs.

It is not obvious from [DMP] of the Set Property Fail message may

contain virtual addresses. There is no rule that prevents this. However in the
table 14 Allowed Data and Address Combinations only actual addresses
area allowed. This would also mean that when a virtual address is used in a
Set Property message, and there is some failure, the Set Property Fail
message must use the connected actual address(es) to report the reasons.

The Map Property Fail message has also no rule to prevent virtual

addresses. It is however must logical to use only actual addresses, because
the Map property also supports only actual addresses.

The conclusion is that the address in the Address-Reason code pair,

will never be a virtual address. This means that only the following formats
are accepted (with xxx = ONE, TWO or FOUR):

• AA_NR_xxx

• AR_NR_xxx

• AA_RS_xxx

• AR_RS_xxx

• AA_RAeS_xxx

• AR_RAeS_xxx

• AA_RSmS_xxx

• AR_RSmS_xxx

The Ax_RAeS_xxx and Ax_RSmS_xxx format must be the same

because there can’t be mixed sized items. All items have the same size, one
octect, the length of a reason code.

The following tables give the different combinations for a Address –

Reason pair:

Address Ax_NR_xxx
Reason One code

Start address Ax_RS_xxx
Increment
Count
Reason One code

 28/28

Start address Ax_RAeS_xxx or Ax_RSmS_xxx
Increment
Count
Reason Count codes
Reason
Reason

 29/29

8 Range problems

The [DMP] document states that the count and increment of a range
address type (xx_Rxxx_xxx) may be 0. It is however not obvious how this
must be handled. I define here the way I think they must be handled and
how it is handled in my code.

8.1 Case 1: Count=0

In this case the range doesn’t have any addresses. This means the

whole block is ignored. The last address isn’t updated. It is like the address
range wasn’t present. So there may also be NO data(property values, reason
code, …) present for the range.

8.2 Case 2: Count !=0, increment=0

In this case the range does have the given number of addresses, but

they will all be of the same address value. However there can be multiple
data(property value, reason codes, …) items that are present in the data, so
they must be handled. They will all be given to the same address. In this case
the last address is also updated.

Example:

Start address Actual/Absolute 0x00000001
Increment 0
Count 2
Data 0x0123
Data 0x5678

When this is used as data for the Set Property message type, the
address 0x00000001 will first be set to value 0x0123 and then to value
0x5678. The last actual address will be 0x00000001.

When the address is a relative address and the start address is 0, the

last address will be used.

 30/30

9 Examples on Moving Head

This chapter shows some examples of DMP PDU’s that are used for
the moving head example.

9.1 Absolute + relative

We can extent the example in 7.6 Property Address-Data Pair to also

set the other properties. The example uses relative addresses to demonstrate
their use..

The next DMP PDU performs the same thing. It is much simpler,

however it uses 41 bytes while the previous example uses only 34 bytes.

 31/31

This demonstrates the power of DMP to compact messages.

When the device has a virtual map like given in 7.1 Virtual/actual

field the following DMP PDU can be used to set all properties. It uses the
virtual addresses.

 32/32

10 Examples with dimmer

To demonstrate the other address formats this document uses a
example dimmer with the following address map.

 33/33

This example shows the extra possibilities that ACN delivers. The
dimmer pack has four channels. Each channel has six properties. The
dimmer pack has also two general properties.

10.1 Setting dimmer values

The most obvious way to set four different intensities on the dimmers

is the following DMP PDU.

There is however a compacter way when using the Range, multiple

data, same size (AA_RAeS_ONE) format.

It is only one byte less, but the more channels there are, the more

space would be saved.

 34/34

When all the fade times must be set to the same value, it is possible to
use the Range, single data item (AA_RS_ONE) format.

It is also possible to set all properties of one channel using the Range,
multiple data items, mixed size (AA_RSmS_ONE) format.

It is also possible to have multiple Property address – Data value pairs

in ranges, like in the next example that sets all fade times and curves to the
same value.

 35/35

The same can be done with the other range types.

11 Conclusion

This document gives examples and guidelines about the DMP
protocol and more specific the way DMP PDU’s must be created and
parsed. I hoped this information makes it easier to understand the [DMP]
document. This document doesn’t describe the different message types.
That information can be found in the [DMP] document.

I think this document makes clear that it is impossible to create a

controller without code to read a DDL file. The DDL file is needed to find
the types and sizes of properties. That information is needed to create DMP
PDU’s.

I am going to use the information in this document and in [DMP] to

create a set of C++ classes that can be used to represent and parse DMP
PDU’s. This classes will be open source so that others can use them to
experiment with DMP.

